
 Improving Two-Thumb Text Entry
on Touchscreen Devices

Antti Oulasvirta, Anna Reichel, Wenbin Li,
Yan Zhang, Myroslav Bachynskyi
Max Planck Institute for Informatics

Keith Vertanen
Montana Tech of the

University of Montana

Per Ola Kristensson
University of St Andrews

Figure 1. KALQ (pronounced as in “calculated”) is a soft keyboard designed to improve two-thumb text entry on tablet devices.
Its design considers grip, coordinated performance of the two thumbs, and linguistic and motor errors.

ABSTRACT
We study the design of split keyboards for fast text entry
with two thumbs on mobile touchscreen devices. The layout
of KALQ was determined through first studying how users
should grip a device with two hands. We then assigned let-
ters to keys computationally, using a model of two-thumb
tapping. KALQ minimizes thumb travel distance and maxim-
izes alternation between thumbs. An error-correction algo-
rithm was added to help address linguistic and motor errors.
Users reached a rate of 37 words per minute (with a 5%
error rate) after a training program.

Author Keywords
Soft keyboards; keyboard optimization; two-thumb text
entry; touchscreen devices; bimanual performance

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Tablet computers and large smartphones with touchscreens
are commonly interacted with using two thumbs. Use of the
thumbs has an intuitive appeal: the grip is stable and sup-
ports typing while walking, sitting, or lying down. Despite
these advantages, the low rate of text entry is a recognized
problem. Reported rates (in words per minute, wpm) for
two-thumb typing on a touchscreen range from 14 wpm
[24] to 31 wpm [8]. Compare this range to other input tech-
niques with mobile devices: 55 wpm with 8–10 fingers on a

tablet placed on a surface [15], 44 wpm with a stylus [22],
and 60 wpm with two thumbs on a physical mini-QWERTY	
keyboard [4]. With such rates, two-thumb text entry on
touchscreens may be limited to simple tasks such as entry
of messages, addresses, calendar events, and names [2].

Our goal is to investigate the upper limit of typing perfor-
mance via methods known to improve typing performance.
We address two major issues. First, no convention exists
comparable to touch typing with physical keyboards that
informs how to hold the device or how to move the thumbs.
Touchscreens offer poor tactile feedback for keypresses,
and the touch sensor does not allow the thumb to rest on its
next target while the other thumb is moving, a technique
known to boost rates with physical buttons [5]. Moreover,
users may grip the device in ways that are detrimental to
performance. Second, it is not known whether the QWERTY
layout, traditionally used such that both thumbs are respon-
sible for a single key, is efficient when the thumbs do all
the presses.

The design of KALQ, shown in Figure 1, is informed by a
series of studies that shed light on these open questions:

1. Button size, keyboard shape, and position are in-
formed by a study of symmetric two-hand grips (N=6).

2. Letter-to-key assignment is resolved computationally,
informed by a model of two-thumb performance ac-
quired from a bimanual tapping task (N=20).

3. Online error correction is based on a large corpus of
mobile text and by modeling tap inaccuracies.

To evaluate KALQ we trained users (N=6) longitudinally in
the new layout using a number of performance-enhancing
strategies. Users reached 37 wpm upon completion of the
training. We conclude by discussing performance gains
brought about by each design decision.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

D! N! F! V!

R! Y! S! Z!

P! X! C!

M! B! W! H!

U!

G! T! O!

K! A! L! Q!

I! E! !

Possible(design(

J!

Goal and Approach
We cast the design problem as a performance-optimization
problem: the goal is to find the design with minimal aver-
age thumb movement time for typing representative English
sentences. Movement time MT is measured here as target-
acquisition time in tapping tasks and is considered in con-
junction with accuracy and errors. In our effort to improve
entry rates, our design choices favor superior performance.
To maximize typing performance, we discuss not only de-
sign choices but also typing skill.

Our design process consists of five steps performed on a 7"
tablet:

In Step 1: Grip Study, we consider grips allowing land-
scape-oriented device usage. We single out one grip that is
best both in performance and in reducing occlusion of the
display. We then decide on button size and on keyboard
position, size, and shape. In the subsequent steps, we as-
sume this grip, because it yields the best tapping performance.
These choices place our focus on split keyboard designs
with non-overlapping movement of thumbs.

In Step 2: Thumb Movement Modeling, we study
two-thumb performance in the N-return task, a novel vari-
ant of the Fitts’ task modified for bimanual tapping. It al-
lows us to model same-side taps and taps that alternate
sides while taking into account lateralization (differences
between the dominant and non-dominant hand). In line with
previous work, in addition to the standard Fitts’-model pa-
rameters, our model for alternate-side taps considers the
time elapsed while the thumb awaits its turn [4,5,19]. To
minimize MT in alternating taps, users adopted a hover-over
strategy wherein the “idle” thumb travels toward its next
target and hovers over it, waiting for its turn. We found that
if a long time has elapsed, visual attention is needed to re-
cover the position of the thumb. This is at considerable cost
to MT, something that the computational layout optimizer
tries to avoid.

In Step 3: Computational Layout Optimization, we uti-
lize a computational keyboard-optimization method [7,16,
22,32] to evaluate 5.6 million letter-to-key assignments. We
extend previous work in keyboard optimization to two-
thumb entry. We follow a hybrid method that combines
global and local search. The layout of the best keyboard is
further optimized via horizontal row-shifting.

In Step 4: Error Correction, we add error correction that
addresses two factors: linguistic context and the distribution
of touch inaccuracies. The error-correction algorithm al-
lows skilled users to increase their speed by letting the algo-
rithm correct errors.

In Step 5: Training and Evaluation, after the users’ base-
line performance with QWERTY is established, they under-
take a special 13–19-hour training program addressing the
learning of key locations, grip, idle-thumb movement, use
of spacebars, motor programs for frequent bigrams and
words, and error correction.

Figure 2. Top: Tapping performance with a breakdown by
grip. The error bars denote 95% CIs. Bottom: The six grips

examined in our study. The colored rectangle depicts the touch
area of the tablet’s corner on the palmar space.

STEP 1: GRIP AND KEYBOARD LAYOUT
The grip on a device determines several performance-
affecting factors: the degrees of freedom in joint movement,
the controlling muscles, and the orientation of the thumbs’
joints in relation to the display. It also determines the key-
board’s ideal size, position, and shape.

Previous work on touchscreens has analyzed grips in terms
of the framing it provides within the kinematic tree of the
upper limbs [31]. We here identify the best-performing grip
empirically, discuss the framing involved, and derive a
keyboard layout. We focus on symmetric grips since they
tend to be more stable and may offer simpler motor control
than asymmetric grips. To define a grip, we utilize basic
terminology of anatomy and joint movement [23]. A grip is
defined by the touching area and the angle of the tablet’s
edge and corner on the palmar space (Figure 2: bottom).
Given a touch area, the hand clasps the device and the fin-
gers extend around the back side (Figure 3). Within the
space of possible grips, we ruled out uncomfortable grips,
unstable grips, and grips that are equivalent in terms of joint
movement. This resulted in six candidate grips. These were
grouped on the basis of the touch area on the palmar space:

	

The	 corner	 rests	 on	 the	 proximal	 palmar	 area,	 either	 on	 the	
thenar/hypothenar	 eminence	 or	 on	 the	 thenar	 crease.	 	

	
The	 corner	 rests	 on	 the	 distal	 palmar	 area.	 It	 touches	 the	
palmar	 crease.	 	

	
The	 corner	 rests	 on	 the	 digital	 crease.	 It	 is	 oriented	 along	
the	 ulnar–radial	 axis.	

1
2

3 4

5
6

6

PROXIMAL DISTAL

RAD
IAL

U
LN
AR

5

4
3

CORNER

EDGE
2 1

1 2 3

4 5

6

Figure 3. To design the layout of the keyboard for Grip	 1, we

place two rectangular keygrids in the active regions defined by
the thumb sweep of a radius of 58 mm. Button size is 9.9 mm.

Method
We employed a tapping task with point-targets appearing
randomly one at a time on either side of the display. Targets
appeared only in the thumb’s active area: the area that the
thumb can reach without “breaking” the grip. The drawback
of using random targets with no preview is that average
performance is slower [14] and the user’s thumb may oc-
clude a target. The advantage over the standard recipro-
cal/cyclical tasks is that active areas can be thoroughly
sampled with fewer subjects.

Students from Saarland University participated in the study:
six right-handed males, with ages ranging from 23 to 26
(M 23.8). The experiment followed a within-subjects design
with one factor: Grip (6 levels; see Figure 2). After intro-
duction of a grip, its active region was calibrated by having
the user sweep his or her thumb from its highest position to
its lowest position. The experimental task was to hit a red
crosshair + as quickly and accurately as possible. A new
crosshair appeared immediately after the previous one was
pressed. Side and position were randomized for each target.
Three sessions were completed per subject per grip, with
each session having 1,000 targets. To minimize order ef-
fects, pre-trial practice was employed and breaks were pro-
vided between trials. We used a Samsung Galaxy Tab 7.0
Plus with a capacitive 7" 1024x600 display. The experiment
was carried out in an office room with no distractions. Sub-
jects were compensated at 10€/hour.

Results
The dataset has 108,000 (6x3x6x1,000) taps. We filtered out
taps 3 SD ± the mean of MT, leaving 106,185 valid taps
(mean MT 556.9 ms, SD 113.8). To identify the best grip,
one-way ANOVA was performed on MT and offset (the
distance between the touch point and the target center).

Figure 2 (top) presents MT (colored bars) and offset (graded
bars) for the six grips, along with 95% confidence intervals
(CIs). The effect of Grip	 was significant both for MT,
F5,106179=242.6, p<.001, and for offset, F5,106179=33.3,
p<.001. Grip	 1 emerges as the fastest, with an average MT
of 539.8 ms. A post hoc test (Bonferroni corrected) showed

that Grip	 1 had significantly lower MT than the other grips:
all ps<.001. Its offset was also significantly smaller than
Grip	 5’s but was larger than Grip	 6’s (both ps<.001). The
difference from other grips in offset was not significant.

Discussion
The best grip, Grip	 1, is presented in detail in Figure 3. We
chose Grip	 1	 because it had the lowest average MT. Though
Grip	 1’s active region is the smallest (width 57.6 mm), it
can easily accommodate enough buttons for the alphabet.
This grip benefits from the tablet’s edge being on the thenar
crease, locking the more distal joints of the hand. The fast-
est grips, 1–3, all inhibit control by distal muscles and
joints, and they rely on the three thumb joints for tapping.
By contrast, grips 4–5 allow control by the more distal pal-
mar muscles, which have a small cross-sectional area so are
not as fast [23]. Our tentative conclusion is that pull-
ing/pushing the thumb with the wrist or distal parts of the
hand is slower. However, our data is from a limited sample
of right-handed male students.

Design Implications
Given this grip, we determine three parameters of the key-
board layout. First, to determine button size, we took the
99% confidence interval for Grip	 1’s offset (31 pixels). For
simplicity, we assumed a square button design, arriving at a
button width of 62 pixels. To utilize the full active area, we
increased the width slightly, to 66 pixels (9.9 mm). This
button width is in line with the recommendations of two
earlier studies of button size for thumb tapping [25,27].

To determine the layout and position of the keyboard, we
examined the active area for this grip by averaging the
sweep radii of subjects. We assumed regular shapes, and we
fitted the largest rectangle consisting of 9.9 mm buttons
inside. This resulted in a 4x4 square-shaped grid, shown in
Figure 3. A 3x5 row layout similar to QWERTY	 would have
required either smaller buttons or exceeding the active area.

Previous work has shown that tapping the corners or edges
of the active region is slower [9,27]. In our design, only the
two medial corner buttons would fall close to these ineffi-
cient areas; others are clearly within the active area. We
learned in informal testing that the areas close to the proxi-
mal edge of the tablet are particularly hard to reach, so we
shifted the keyboard 5 mm up, as Figure 3 shows.

Figure 4. In the N-return task, a number sequence of N+2 keys
appears on two 4x4-button grids (left, right). The first key (1)
is tapped on one side, then N keys on the other (2)(3)(4). Then

there is a return to the first side for 5. Here, N is 3.

10 mm

58 mm
5 mm

2

4

3

1

5

STEP 2: MODELING TWO-THUMB PERFORMANCE
We now describe how we extended the modeling of
two-thumb text entry from physical keyboards to
touchscreens. Our model addresses the following issues:

1. Same-side taps: sequential keypresses on one side
2. Alternating taps: switches between sides
3. Lateralization: difference between left and right thumb

To inform model optimization and user training (Steps 3
and 5), we focus on superior performance, defined as the
fastest tap sequences with under 5% errors. This approach
is justified because letter-to-key assignments based on such
a measure favor performance-enhancing typing strategies.
We focus on speed here and will address accuracy in Step 4.

Background
The state-of-the-art predictive model for two-thumb text
entry is a modification of Fitts’ law and was developed for
physical keyboards [4,5,20]. Movement time from keyn-1 to
keyn, follows the Shannon formulation of Fitts’ law:

 𝑡!"##$ 𝑘𝑒𝑦!!!, 𝑘𝑒𝑦! = 𝑎 + 𝑏 𝐼𝐷 = 𝑎 + 𝑏 𝑙𝑜𝑔!
!
!
+ 1 , (1)

where D is the distance between keys, W is the width of keyn,
ID is the index of difficulty derived from D and W, and a and
b are empirical parameters.

For alternate-side (switching) taps, the “idle” thumb is as-
sumed to approach its next target aggressively. Its movement
time is affected by not only ID but also the time elapsed,
telapsed, before its turn. After it presses keyn, the thumb imme-
diately starts to approach keyn. If it has not yet reached it
when its turn comes, the remaining movement is shorter than
if having to start from the beginning. If telapsed is long enough
for the thumb to reach keyn, it can rest over or on it. Then,
only a minimal time tmin is needed for pressing keyn. The total
time Tn for the nth letter in a word is:

 𝑇! =
𝑇!!! + 𝑡!"##$ 𝑘𝑒𝑦!!! − 𝑘𝑒𝑦! 𝑠𝑎𝑚𝑒

𝑚𝑎𝑥 !!!!!!!"#
!!!!!!!"##$(!"#!!!!!"#!)

 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 (2)

In the case of touchscreens, resting on a key is impossible
because it would cause an erroneous tap. For one to benefit
from the waiting time, there are two possibilities: the thumb
can either stay in the air in a fixed position or hover over
the next key. Because D is smaller with the latter technique,
and tfitts as well, we taught this technique to our subjects.

Data Acquisition: The N-Return Experiment
Our data are acquired from a bimanual tapping task wherein
we manipulate telapsed by increasing the number of buttons
that one hand is typing while the other is waiting. In the
N-return task, the user has to type a sequence of 3–7 num-
bers (i.e., 1≤N≤5). Therefore, a thumb has to wait for N
keys before it returns to tapping. In each sequence, the first
key is on one side, then N keys on the other, and the last
key is back on the initial side. Figure 4 illustrates the task.

Participants: Twenty right-handed male students were re-
cruited from Saarland University (average age 24.5 years,
SD 3.2). Half of the subjects were well acquainted with
touch-typing in a physical QWERTY context. They were
compensated for their time at €10/hour. To motivate the
subjects further [4], we offered a bonus of 30€ to the best
10% of subjects with respect to average MT.

Experiment design: The experiment followed a randomized
block design with 10 unique number sequences. The sides
and positions of the 3–7 numbers were randomized within
their keygrids with the constraint of disallowing repeated
taps. Use of many repetitions was deemed necessary for
users to learn the parallel movement of the “idle” thumb.
Each sequence had 10 trials, each with 10 repetitions.

Task and apparatus: The experimental task was to tap the
sequence of numbers in ascending order 10 times as rapidly
as possible while trying not to miss any key. The numbered
targets were persistently shown during a trial to allow pre-
planning of movement. If a subject failed to complete a trial
because of an error rate higher than 5%, the trial had to be
redone. The same tablet device was used as in Step 1.

Procedure: Subjects were first taught Grip	 1 and the hov-
er-over technique. For the hover-over technique, we in-
structed subjects to position the thumb over the next key
while waiting for its turn. During the experiment, feedback
on keypresses was given in real time via a black asterisk *
(correct) and red asterisk * (incorrect). After each trial, a
screen appeared with a summary of the speed and accuracy.

Modeling
In view of space restrictions, we omit the reporting of aver-
age data and focus on the highest performance within a
condition (each condition had 10x10 N+2-tap sequences).
To model best-case performance, we omitted sequences

Figure 5. Models of same-side taps and alternate-side taps. Separate plots for left and right hand. Vertical bars denote 95% CIs.

Left Right Left

Alternate-side taps

Right

Same-side taps

with taps longer than 1,000 ms. Because in Step 3 we use
pixel coordinates, we here report D in pixel units. In all
models, we use eight ID conditions. For modeling of side-
switch taps, we use six telapsed conditions.

Same-Side Taps
For same-side taps, the subset of the fastest 7% of tap se-
quences constitutes 25,296 data points, or 65% of all data.
This indicates that performance in this task improved quick-
ly, stabilizing near a user’s personal best. We model MT
with a polynomial:

 𝑀𝑇!"#$ = 319.5 − 89.0 𝐼𝐷 + 36.7 𝐼𝐷! (3)

 𝑀𝑇!"#!! = 237.3 − 7.6 𝐼𝐷 + 13.8 𝐼𝐷! (4)

The R2 values for the left and right side were .94 and .95,
respectively (we later replicated this finding in a study of
same-side taps). We draw two observations from Eq. (3)
and (4):

1. Moderate lateralization: The dominant hand is about
30 ms faster than the non-dominant.

2. The lowest-ID targets are slower than medium-ID tar-
gets, in contrast to the standard Fitts’-law models.

The need for a squared term can be explained by the obser-
vation that a thumb at times occludes nearby targets (low-
ID) and it needs to be moved away for seeing the target. If
one limits to ID≥1.3, a first-order model suffices.

Alternating Taps
Out of 14,619 returning taps (the Nth tap) in data, filtering
to the best 15% within a condition yielded 5,105 data points
(35% of the total). The 5% threshold was chosen to address
the fact that reaching the best performance in alternating
taps requires quite a few repetitions, and we had fewer ob-
servations of returning taps per sequence. Our model is a
bivariate quadratic function with telapsed (see Background)
and ID as the predictive variables:

𝑀𝑇!"#$ = 265.286 − 9.501 𝐼𝐷 − 0.024 𝑡!"#$%!& + 2.003 𝐼𝐷!
 −0.007 𝑡!"#$%!& 𝐼𝐷 + 3.322 ∗ 10! 𝑡!"#$%!&! (5)
𝑀𝑇!"#!! = 142.601 + 86.564 𝐼𝐷 + 0.062 𝑡!"#$%!& − 17.949 𝐼𝐷!
 −0.035 𝑡!"#$%!& 𝐼𝐷 + 1.930 ∗ 10! 𝑡!"#$%!&! (6)

The fit for left- and right-thumb models was satisfactory:
R2=.79. The following observations were made:

1. Alternating taps are faster than same-side taps but only
when telapsed is small.

2. The non-dominant thumb (here, the left) is better at
switching between thumbs when telapsed < 600 ms. In
this range, its performance is less dependent on ID: it
can virtually “teleport” over its next target.

3. The dominant hand is better only for very brief switch-
es with a short distance.

4. In alternate-side taps, ID has almost no effect, except
for brief switches by the dominant (here, right) hand.

5. There is a large penalty for long waiting. This slowing
effect similar to that observed in previous work [11].

Figure 6. Illustration of the hover-over technique in writing of
a five-character sequence 12345: The idle thumb (LEFT) be-
gins immediate transition toward a hover-over position after
release from 1. It can approach its next target (5) while the

other thumb is pressing down its target (4).

Discussion
We learned that the non-dominant hand is generally the
better switcher, with a faster average MT. also We observed
that for brief switches (small telapsed) MT is virtually unaf-
fected by both telapsed and ID, and in this case switches are
faster than same-side taps, contrary to the slowing effect of
switches reported earlier [11]. The benefit is due to the hov-
er-over behavior wherein the thumb moves immediately
towards its next target, only needing to press down when its
turn arrives (Figure 6). Observing this behavior is unsur-
prising, given that we taught it to the participants.

The previous model for physical keyboards (Eq. 2) predicts
decreasing MT as telapsed rises. In contrast, for taps where
telapsed > 600 ms, a substantial penalty in MT was observed,
similar to the slowing effect [11]. We conjecture that this is
due to interrupted memory [1]: As time passes without at-
tention to the idle side, uncertainty over the thumb’s posi-
tion grows. Once the thumb’s position has been forgotten, it
needs to be restored via a glance [17].

Design Implications
We arrived at three implications for letter assignment:

1. Maximize alternation between thumbs.
2. In same-side tapping, favor the dominant-hand side.
3. While the non-dominant side supports multiple key

clusters, keys on the dominant-hand side should be
packed around a center, to minimize travel costs.

Figure 7. A hybrid optimizer using local and global search.

Release

LEFT

RIGHT

Press down

1 5

2 3 4

1

5

Approach
hover-over

position
Wait

Approach
target

Gradient)Descent))500#itera)ons#

Annealing))10#X#3,000#itera)ons#

Gradient)Descent)10,000#itera)ons#

5,000#random#layouts#

100#best#

10#best#

1)winner)

STEP 3: COMPUTATIONAL LAYOUT OPTIMIZATION
Finding a mapping of letters to keyslots that minimizes fin-
ger travel time is an NP-complete problem that is best ad-
dressed by means of computational optimization methods
[16]. In this section, we formulate this problem as a combi-
natorial optimization problem, extending existing keyboard
optimization research from a single end-effector (i.e., a fin-
ger or stylus) to two end-effectors.

In line with previous work [16], the keyboard is represented
as a permutation of 26 letters, two spacebars, and four emp-
ty keyslots. Inclusion of empty slots allows the optimization
algorithm to move them around the grids. The goal is to
find a permutation that minimizes our cost function: aver-
age MT as defined by simulated typing of a representative
corpus of sentences under equations 3–6. Representing
keyboard as a permutation assigned to a fixed grid with
keyslots yields a problem size of 4x1026.

We extend previous work in permutation-based optimization
by creating a hybrid approach that utilizes both gradient
descent and simulated annealing (Figure 7). Initially, gradi-
ent-descent search is performed from 5,000 random starting
locations. We pick the 100 best permutations, assuming that
these must have gotten some critical parts of the layout cor-
rect. Simulated annealing is performed 10 times for each
candidate layout. This effectively searches around the
promising keyboard before convergence at the best local
optimum. In the final step, gradient descent is performed
for the 10 best keyboards. For this step, we allow double
and triple transpositions also. This modification is inspired
by evolutionary algorithms wherein larger transpositions
are allowed [28]. With the iteration counts given in Figure
7, this process yields a total of 5.6 million iterations.

As our corpus we use the MobileEmail corpus, consisting of
phrases written with mobile devices from the Enron e-mail
dataset [12,29]. It has 2,109 sentences and 20,500 words,
with, on average, 4.1 letters per word. We simulate let-
ter-by-letter transitions by applying equations 3–6 as ap-
propriate and keeping a record of thumb location and telapsed.
Double keypresses were assumed to follow equations 3 and
4 with D = 0 + ε. Following a recommendation from previ-
ous work [19], our spacebar policy is alternation: the thumb
on the opposite side always presses the spacebar.

In each iteration, the average cost C1 of a permutation is
calculated for a corpus by means of Eq. 3–6. After this step,
two keys are transposed and the cost of the new layout C2 is
calculated. The only exception is the beginning of a new
phrase, when the thumb starts at the third button from the
edge on the second row (initial position). If C2<C1, the new
permutation is accepted. If not, there are two alternatives
for acceptance or rejection of C2. In gradient descent, we
never choose a permutation with lower cost. In simulated
annealing, we consult the Boltzmann distribution:

 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡 𝐶! = 1/(1 + 𝑒
!!!!!

!), (7)

where T is the temperature parameter, which we set to 90
[16]. Decreasing the temperature parameter T prevents the
search from getting stuck too early at a local optimum [28].
Our implementation follows existing work [16]:

1. set	 T	 =	 90	
2. function	 (initial	 keyboard,	 T):	 Keyboard	 	
3. 	 	 	 	 repeat	
4. 	 	 	 	 	 	 	 	 	 	 	 	 choose	 two	 keys	 to	 transpose	 from	 initial	 keyboard	
5. 	 	 	 	 	 	 	 	 	 	 	 	 determine	 the	 modified	 keyboard’s	 cost	
6. 	 	 	 	 	 	 	 	 	 	 	 	 if	 new_cost	 <	 old_cost	 then	
7. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 accept	 the	 modified	 keyboard	
8. 	 	 	 	 	 	 	 	 	 	 	 	 else	
9. 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 use	 the	 Boltzmann	 distribution,	 Eq.	 7	
10. 	 	 	 	 	 	 	 	 	 	 	 	 reduce	 T	
11. 	 	 	 	 	 	 	 	 	 	 	 	 increase	 i	
12. 	 	 	 	 until	 i	 =	 maximum_iterations	
13. return	 keyboard	 with	 lowest	 cost	

Layout tuning: We conducted a row-tuning exercise for the
best keyboard. This was inspired by recent split-keyboard
designs such as dextr (see textwithdextr.com) in which key
columns and rows are not aligned. Each row of keys (8 in
all) was shifted 0, 20, 40, or 60 pixels horizontally, inde-
pendent of all others, yielding 48=65,536 layouts, from
which we picked the best one. We looked at horizontal
shifting only, because we learned that shifting vertically
would require extending the thumb too far in attempts to
reach the topmost keys. The resulting design shifts rows 2–4
on the left-hand side 20 pixels right). This change produced
a gain of only 0.1 wpm. The negligible gain is due to the
interconnectedness of keys: shifting a key decreases the
distance to some keys but increases the distance to others.

Outcome: KALQ
KALQ (as in “calculated”) is the best keyboard after 5.6M
iterations and layout tuning with a predicted entry rate of
49.0 wpm. For comparison, we created a quasi-QWERTY
layout in a 4x4 grid, following QWERTY’s division of but-
tons by hand and retaining their relative order
(top-to-bottom, left-to-right). KALQ is superior to the quasi-
QWERTY	 layout by 4.1% and to the alphabetical layout by
6.1%.

The following observations were made about KALQ:

1. The division of work is almost equal, at 54% and 46%
for the right and left thumb, respectively.

2. Alternation is rapid: 62% of the taps are switches.
3. Travel distances are short: On average, the left thumb

moves 86 px, the right 117.
4. The spacebars are centrally located.
5. The right thumb handles all vowels except y. The

clustering of vowels around the spacebar favors quick
switches and minimizes travel distance. The right
thumb is responsible for 64% of same-side taps.

6. The left thumb has most of the consonants, exploiting
its ability to hover above the next button sooner. It has
most first letters of words and most of the consonants.

Figure 8. A visualization of two statistical properties of typing
with KALQ: Average MT to key-targets (hue: slow fast)

and frequency (transparency 1–100).

Figure 8 depicts the average movement times and the fre-
quency of taps on letters. It demonstrates how the right
thumb’s side has quick-to-operate, frequently pressed keys
clustered around the spacebar, whereas the left thumb has
only a few fast-action keys while the rest are more diffuse.
This exploits the unique switching characteristics observed
in the N-return study. A typing example is given in Table 1.

STEP 4: ERROR CORRECTION
Previous work has shown improvements in text-entry accu-
racy on mobile devices through error-correction techniques
that consider linguistic context and movement characteris-
tics [6,9,13]. Ideally, error correction should operate in real
time, correcting erroneous characters as they are typed.

Building on previous work [13], we constructed an error-
correction technique for KALQ	 that utilizes both linguistic
information and the movement model for two-thumb text
entry. For each touch point T, the error-correction model
finds the key 𝐾∗ that maximizes the posterior probability:

 𝐾∗ = arg max! 𝑃 𝐾 𝑇 𝑃 𝐾 . (8)

Movement Model
Since KALQ is a new keyboard layout there is no straight-
forward method to collect representative touch point data.
We could not train a likelihood model on the evaluation
study’s touch point data as this would mean we would train
the model on the same subjects. Therefore, we instead esti-
mated the likelihood P(K|T) by using a prescriptive model
that assumes normal distribution of touch points [13],
which is justified by existing evidence [9]. The probability
of a touch point belonging to a particular key is

 𝑃 𝐾 𝑇 = exp − !!
!

!!
! , (9)

where 𝑑! is the Euclidean distance between the touch point
and the center of the key and 𝜎! is an estimate of the vari-
ance of the touch point distribution around that particular
key’s center. This parameter was estimated from training
data of Step 2 that is disjoint from the evaluation (Step 5).

Language Model
The prior probability P(K) was estimated using a statistical
language model trained on a large corpus. Our character-
based n-gram model estimated the probability of the next
key based on up to the previous six characters of context:

Letter	 Hand	 D	 (px)	 telapsed	 (ms)	 MT	 (ms)	
S	 L	 -‐	 -‐	 266	
O	 R	 	 	 93	 	 	 266	 232	
U	 R	 	 	 93	 -‐	 252	
N	 L	 	 	 66	 	 	 485	 250	
D	 L	 	 	 66	 -‐	 266	
S	 L	 	 	 93	 -‐	 266	
_	 R	 	 	 66	 	 	 782	 246	
G	 R	 148	 -‐	 268	
O	 R	 132	 -‐	 263	
O	 R	 	 	 	 0	 -‐	 237	
D	 L	 	 	 93	 1015	 255	

Table 1. Predicted typing performance with KALQ.

 𝑃 𝐾 = 𝑃 𝐾 𝐶 ≈ 𝑃 𝐾 C!!!!!!), (10)

where C is all previously written text and 𝐶!!!!!! are the last
six characters written.

We trained our model on a sample of 778M messages sent
via Twitter (12/2010–6/2012). Duplicate tweets, retweets,
and non-English-language tweets were eliminated via a
language-identification module [18, 19] (with a CI of 95%).
We included only tweets written on mobile devices as
judged from a tweet’s source string. We split each tweet
into one or more sentences and kept only sentences wherein
all words (after removal of punctuation such as commas)
were in a list of 330K English words. The latter word list
was obtained by concatenation of a number of human-
edited dictionaries (Wiktionary, Webster’s dictionary, the
CMU pronouncing dictionary, and GNU aspell). After fil-
tering, the training data consisted of 94.6M sentences,
626M words, and 2.56G characters.

Our language model used a vocabulary of the letters A–Z
plus space, apostrophe, comma, period, exclamation point,
and question mark. Using the SRILM toolkit, we trained a
7-gram language model, using Witten–Bell smoothing and
no count cutoffs. In response to resource constraints of our
mobile device, we entropy-pruned the model to reduce its
size. Our final model had 1.4M parameters (all n-gram
probabilities plus backoff weights) and a compressed disk
size of 9 MB. We tested the predictive power of the model
by using a set of messages written on Blackberry mobile
devices [12]. We measured language-model performance in
terms of average per-letter perplexity. The perplexity indi-
cates the average number of choices the model thinks are
possible next, given the previous context. The perplexity of
the MobileEmail sentences in our model was 3.84. Despite
its small size, the model performed well even when com-
pared to an unpruned 10-gram model with 340M parame-
ters. This large model only reduced the test set's perplexity
to 3.44.

STEP 5: TRAINING AND EVALUATION
Empirical evaluation is preferable to model-based predic-
tions in the case of novel layouts, because predictions have
turned out to be higher than the empirically achieved rates
(e.g., compare the prediction in [32] to empirical rates re-
ported in [33]). Overestimation may arise from the fact that
Fitts’-law-based models disregard factors that affect typing

D! N! F! V!

R! Y! S! Z!

P! X! C!

M! B! W! H!

U!

G! T! O!

K! A! L! Q!

I! E! !

J!

performance. However, for validation of a novel keyboard
design, a compromise between sample size and the length
of training must be sought. We preferred securing sufficient
time for learning new motor programs over a large N.

Training Program and Performance Assessment
To minimize the training time and to maximize eventual
performance, we developed a systematic training program.
Our training program builds on existing work: teaching key
locations [29], practicing frequent bigrams and distributing
practice over time [33], and rewarding high performance
monetarily [4]. “Cold turkey” evaluation, wherein users
type randomly selected phrases with no special practice,
may not allow time for performance to approach a model’s
predicted performance.

The program consists of 13–19 one-hour sessions structured
in the manner Table 2 describes. The baseline performance
level is assessed first with QWERTY, without practice and
instruction in typing. The first training sessions with KALQ
focus on learning the grip, spacebar use, and the hover-over
technique. We provide instructions in each and monitor
performance. Key locations are practiced by typing the al-
phabet without seeing the key labels. After learning these
basics, the trainees enter sessions with the most common
English bigrams and words. In the subsequent full-sentence
practice, they type randomly chosen sentences of increasing
length from the MobileEmail corpus [12,29]. From that
point on, we set performance goals and give feedback on
typing rate. We also include a special session that focuses
on bigrams or words that had been slower than average for
the user. After performance starts to stabilize, toward the
12th session, we introduce error-correction exercises, ask-
ing users to speed up and ignore errors.

Participants
Six right-handed students (3 M, 3 F) were recruited from
Saarland university (M 25 years, SD 3.52). They reported
having almost no experience with large touchscreen devices
such as tablets, and only one was a touch-typist on physical
QWERTY keyboards. The participants were compensated at
10€/hour, and the two best were given a bonus of €100.

Session	 Contents	 Test	 Goal	
0	 QWERTY	 typing	 test	 I	 Baseline	 	 measurement	
1	 Grip,	 idle	 thumb	 tech-‐

nique,	 spacebar	 policy	
	 Introduce	 KALQ,	 confirm	

understanding	 of	 the	 basics	
1-‐3	 The	 alphabet	 and	 frequent	

words	
	 Type	 the	 alphabet	 without	

seeing	 the	 key	 labels	
3-‐8	 Frequent	 bigrams	 and	

words	
II,	 III	 Learn	 motor	 techniques	 for	

frequent	 text,	 speed	 up	
9-‐13	 Full	 sentences,	 frequent	

bigrams	 and	 words	
IV	 Speed	 up	 gradually	

13-‐19	 As	 above	 but	 extra	 prac-‐
tice	 with	 error	 correction	

	 Speed	 up	 while	 keeping	
error	 rate	 under	 5%	

Final	 Final	 evaluation	 Va,	 Vb	 Personal	 best	 with	 KALQ	

Table 2. Our program for training and assessing
typing performance with KALQ.

Figure 9. Development of text entry speed throug the training

program. The vertical bars denote 95% CIs.

Measurement of Typing Performance
Six tests were carried out throughout the program (see Ta-
ble 2): the first for QWERTY and the rest to track improve-
ment in KALQ. Our QWERTY	 setup was a full-width three-
rows-plus-spacebar keyboard identical to the built-in key-
board of the tablet (button sizes larger than in KALQ). Be-
cause using the same phrase sets repeatedly overestimates
entry rates [33], we used separate phrases sets for training
vs. testing. Our phrase set is a subset of the MobileEmail
corpus with verified memorable sentences: 200 phrases,
1,073 words, and 5,253 characters [12]. The training phrase
sets had 1,147 unique sentences after the removal of these
sentences. Presentation order was randomized. All tests
included a 15-minute warm-up session. Users’ final per-
formance was tested with and without error correction (tests
Va and Vb in Table 2).

Apparatus and Materials
We used a Samsung Galaxy Tab 7.7", which has a slightly
larger and more responsive touch sensor than the tablet of
our previous studies. Feedback on error rate and wpm was
given after each phrase. In exercises but not in testing, a
REDO button appeared if the error rate exceeded 5%. Dur-
ing typing, a black asterisk * was presented for correct taps
and a red one * for incorrect taps. With error correction,
coloring was turned off to improve the latency of feedback.

Results
We calculate wpm with words of five characters. Error rate
is character error rate (CER), calculated by using the
Damerau-Levenhstein distance.

Typing Performance
The users’ baseline performance with the full-width
QWERTY layout was 27.7 wpm (9.0% CER). Figure 9
shows the development of typing performance over the
course of the program. In the final test, after, on average,
16.8 hours of training (min. 13 h, max. 19 h), the users
reached 37.1 wpm (5.2% CER). The difference to QWERTY
was significant (see Figure 9).

We believe that in a task involving text generation, their
performance would be even better. We noticed that in the
transcription task, long sentences caused problems, because
users often had to glance at the stimulus phrase and they
lost the position in the text because only asterisks were pro-

KALQQWERTY

1 4 8 11 13-19
Test day

wpm

vided as resumption cues. Therefore, we examined the dis-
tribution of MT and divided the phrases into two bins by
whether they contained taps longer than 900 ms. The latter,
in our experience, correlates well with the glancing behav-
ior. The average typing speed for “non-glance phrases” was
indeed slightly higher: 40.2 wpm (4.0% CER). This result is
considered tentative, because an eye-tracker was not used.

Effect of Error Correction
The users’ entry rate with error correction was about the
same as without it: 36.7 wpm (6.4% CER). Disappointing-
ly, the error rate was slightly higher with the online version
of our error-correction technique than without it.

We hypothesized that this is probably due to the chicken-
and-egg problem of no suitable training data from true
KALQ expert users being available before the experiment
was conducted. Therefore, once experimental data had been
collected, we performed two offline experiments with the
typing data. We used a single user typing 26 phrases as
training data, a dataset disjoint from the testing data on
which we ran the offline experiment. The typing data from
this user were then used to re-estimate the error-correction
model’s touch-point parameters. We found that allowing
the error-correction algorithm to learn touch-point regulari-
ties from even a single expert KALQ user was enough to
result in a percentage point’s reduction in CER, both for
test data originally collected with online error correction
and for data originally collected without it. We also investi-
gated the impact of allowing the error-correction algorithm
to leverage prior recognition context (the sets of likelihoods
and priors for all previously typed keys) instead of having
to rely on a character string as the sole prior context. In
other words, the error-correction algorithm performs a
search through all possible letter combinations over the
entire prior context when it tries to identify the most likely
text in view of the user’s input, instead of just performing a
point estimate for the last inputted key. Since a search over
all letter sequences is infeasible, we used a pruning beam to
speed up the search. We found that using prior recognition
context further reduced the error rate, with a 1.3 percentage
point reduction in CER, both for test data collected with
online error correction and data collected without it.

DISCUSSION
This work has contributed to understanding how to design
usable and effective keyboards for two-thumb text entry on
mobile devices using touchscreens. We have presented a
series of studies with the goal of improving text entry rates.
With all design choices in play, trained users achieved an
entry rate of 37 wpm (5% CER)—an improvement of 34%
over their “naïve” baseline performance with a standard
touch-QWERTY system. This rate represents an improve-
ment of 19% over the best rate, of 31 wpm, reported in the
previous literature [8]. However, the entry rates are not di-
rectly comparable due to differences in the samples and the
training procedures. Nevertheless, given that our users were
non-native speakers, we consider the result promising.

More interestingly, the results can help future efforts by
providing estimates of the gains attributable to different
design and ergonomic choices:

• Grip: Grasping the tablet with its corner in the “valley”
created by the thenar and hypothenar eminence yields
~4% faster tapping performance than does a “random”
grip. Moreover, the associated keyboard layout (Figure 3)
occludes the display the least.

• Hover-over technique: By analyzing an existing model
of two-thumb typing, we proposed a thumb coordination
technique wherein the idle thumb is approaching its next
target and hovers over it to minimize travel distance.
Based on Figure 5, we estimate that this typing strategy
saves about 10–20% on MT in alternating taps.

• Optimization of letter assignment: KALQ was optimized
computationally from a model of best-performance two-
thumb typing. As a result, it maximizes alternating taps
and minimizes same-side travel distances. Our model pre-
dicted a benefit of only 4% over a comparable quasi-
QWERTY	 layout. However, this prediction was made as-
suming the same typing technique and grip.

• Error correction: We developed an error-correction
technique that adapts well-known techniques to the
unique motor and linguistic aspects of two-thumb typing.
Although our users’ error rates were not improved by the
online version of our corrector, offline analyses showed
that with better parameters, the error rate can be de-
creased by 1.3 percentage points.

The design of KALQ is readily usable. The layout has space
to accommodate more buttons without breaking the grip.
Backspace, shift, punctuation, and special characters can be
placed in the empty slots on KALQ‘s right-hand side. To
tune the keyboard to the hand dimensions of the user, it
could be scaled, with calibration asking the user to perform
the sweep gesture shown in Figure 3, and left-handed users
could select a version wherein the left and right keygrids
are swapped. However, because the associated improve-
ment due to the optimization layout is small, not many us-
ers may want to learn KALQ. Our results suggest that tangi-
ble improvements can be achieved also for QWERTY simply
by changing the grip and learning the hover-over technique.
However, we hypothesize that, because of the smaller travel
distances, KALQ is more ergonomic when used intensively.

We foresee several opportunities to reach even higher typ-
ing rates. To improve letter-to-key assignment, other factors
affecting two-thumb typing should be incorporated, such as
the angle of approach, occlusion by the thumb’s tip, and the
absolute screen location of keys. To improve the design for
goals other than performance, especially learning time,
multi-objective optimization could be used [7]. Error cor-
rection can be improved through training of the movement
model with real-world user data. We have studied only one
grip, which is probably contingent on properties unique to
our sample. Future research should address other grips and
find designs that work with the distribution of grips that

users normally exhibit. Finally, our sampling has been lim-
ited to right-handed male students and a 7" tablet. Future
research needs to examine handedness and the different
hand sizes and form factors. Larger form factors are likely
to exhibit phenomena similar to those reported here, but
smaller form factors will face novel issues, such as that the
thumbs’ active regions will overlap [5].

ACKNOWLEDGEMENTS
The code for optimization, predictive models, the keyboard,
and empirical data are released on our project homepage.
This work was supported by the Max Planck Center for
Visual Computing and Communication (MPC-VCC),
EPSRC (grant number EP/H027408/1), and the Scottish
Informatics and Computer Science Alliance.

REFERENCES
1. Altman, E.M., and Trafton, J.G. Memory for goals: An activa-

tion-based model. Cognitive Science 26, 1 (2002), 39-83.

2. Bao, J. Pierce, S. Whittaker, and S. Zhai. Smart phone use by
non-mobile business users. Proc. MobileHCI’11, ACM Press
(2011).

3. Castellucci, S.J., and MacKenzie, I.S. Gathering text entry
metrics on Android devices. Ext. Abst. CHI’11, ACM Press
(2011), pp. 1507–1512.

4. Clarkson, E., Clawson, J., Lyons, K., and Starner, T. An em-
pirical study of typing rates on mini-QWERTY keyboards.
Ext. Abstr. CHI’05, ACM Press (2005), 1288–1291.

5. Clarkson, E., Lyons, K., Clawson, J., and Starner, T. Revisit-
ing and validating a model of two-thumb text entry. Proc.
CHI’07, ACM Press (2007), 163–166.

6. Clawson, J., Lyons, K., Rudnick, A., Iannucci Jr., R.A., and
Starner, T. Automatic whiteout++: correcting mini-QWERTY
typing errors using keypress timing. Proc. CHI’08, ACM
Press (2008), pp. 573-582.

7. Dunlop, M., and Levine, J. Multidimensional pareto optimiza-
tion of touchscreen keyboards for speed, familiarity and im-
proved spell checking. Proc. CHI’12, ACM Press (2012),
2669–2678.

8. Goel, M., Findlater, L., and Wobbrock, J. Walktype: Using
accelerometer data to accommodate situational impairments in
mobile touch screen text entry. Proc. CHI’12, ACM Press
(2012).

9. Goodman, J., Venolia, G., Steury, K. and Parker, C. Language
modeling for soft keyboards. Proc. AAAI’02, (2002), pp. 419–
424.

10. Karlson, A., Bederson, B., and Contreras-Vidal, J. Under-
standing single-handed mobile device interaction. Handbook
of Research on User Interface Design and Evaluation for Mo-
bile Technology (2006), 86–101.

11. Kin, K., Hartmann, B., and Agrawala, M. Two-handed mark-
ing menus for multitouch devices. ACM TOCHI 18, 3 (2011).

12. Kristensson, P., and Vertanen, K. Performance comparisons of
phrase sets and presentation styles for text entry evaluations.
Proc. IUI’12, ACM Press (2012), pp 29-32.

13. Kristensson, P.O. and Vertanen, K. Asynchronous multimodal
text entry using speech and gesture keyboards. Proc. Inter-
speech’11, ISCA (2011), pp. 581-584.

14. Kvalseth, T. Quantitative models of motor responses subject to
longitudinal, lateral, and preview constraints. Human Factors
20, 1 (1978), 35–39.

15. Li, F., Guy, R., Yatani, K., and Truong, K. The 1line key-
board: a QWERTY layout in a single line. Proc. UIST’11,
ACM Press (2011), 461–470.

16. Light, L., and Anderson, P. Typewriter keyboards via simulat-
ed annealing. AI Expert (1993).

17. Logan, G., and Crump, M. The left hand doesn’t know what
the right hand is doing. Psychological Science 20, 10 (2009).

18. Lui, M., and Baldwin, T. Cross-domain feature selection for
language identification. Proc. IJCNLP’11, Chiang Mai, Thai-
land, pp. 553-561.

19. Lui, M., and Baldwin, T. langid.py: An off-the-shelf language
identification tool. Proc. ACL 2012, Jeju.

20. MacKenzie, I., and Soukoreff, R. A model of two-thumb text
entry. Graphics interface (2002), 117–124.

21. MacKenzie, I., and Soukoreff, R. Phrase sets for evaluating
text entry techniques. Ext. Abst. CHI’03, ACM Press (2003),
754–755.

22. MacKenzie, I., and Zhang, S. The design and evaluation of a
high-performance soft keyboard. Proc. CHI’99, ACM Press
(1999), 25–31.

23. Neumann, D., and Rowan, E. Kinesiology of the musculoskele-
tal system: foundations for physical rehabilitation. Mosby
Philadelphia, 2002.

24. Oulasvirta, A., and Bergstrom-Lehtovirta, J. Ease of juggling:
studying the effects of manual multitasking. Proc. CHI’11,
ACM Press (2011), 3103–3112.

25. Parhi, P., Karlson, A., and Bederson, B. Target size study for
one-handed thumb use on small touchscreen devices. Proc.
MobileHCI’06, ACM Press (2006), 203–210.

26. Parisod., A., Kehoe, A., and Corcoran, F. Considering appro-
priate metrics for light text entry. Proc. iHCI’10 (2010), pp.
98–101.

27. Perry, K., and Hourcade, J. Evaluating one handed thumb
tapping on mobile touchscreen devices. Proc. Graphics Inter-
face (2008), 57–64.

28. Rao, S. Engineering optimization: theory and practice. Wiley,
2009.

29. Sears, A., Jacko, J., Chu, J., and Moro, F. The role of visual
search in the design of effective soft keyboards. Behaviour &
Information Technology 20, 3 (2001), 159–166.

30. Vertanen, K., and Kristensson, P. A versatile dataset for text
entry evaluations based on genuine mobile emails. Proc. Mo-
bileHCI’11, ACM Press (2011), 295–298.

31. Wagner, J., Huot, S., and Mackay, W. Bitouch and bipad:
Designing bimanual interaction for hand-held tablets. Proc.
CHI’12, ACM Press (2012).

32. Zhai, S., Hunter, M., and Smith, B. The Metropolis key-
board—an exploration of quantitative techniques for virtual
keyboard design. Proc. UIST’00, ACM Press (2000), pp. 119–
128.

33. Zhai, S., Sue, A., and Accot, J. Movement model, hits distribu-
tion and learning in virtual keyboarding. Proc. CHI’02, ACM
Press (2002), 17–24.

