
 Improving Two-Thumb Text Entry  
on Touchscreen Devices 

Antti Oulasvirta, Anna Reichel, Wenbin Li,  
Yan Zhang, Myroslav Bachynskyi 
Max Planck Institute for Informatics 

 

Keith Vertanen 
Montana Tech of the  

University of Montana 
 

Per Ola Kristensson 
University of St Andrews 

 

 
 

Figure 1. KALQ (pronounced as in “calculated”) is a soft keyboard designed to improve two-thumb text entry on tablet devices.  
Its design considers grip, coordinated performance of the two thumbs, and linguistic and motor errors.

ABSTRACT 
We study the design of split keyboards for fast text entry 
with two thumbs on mobile touchscreen devices. The layout 
of KALQ was determined through first studying how users 
should grip a device with two hands. We then assigned let-
ters to keys computationally, using a model of two-thumb 
tapping. KALQ minimizes thumb travel distance and maxim-
izes alternation between thumbs. An error-correction algo-
rithm was added to help address linguistic and motor errors. 
Users reached a rate of 37 words per minute (with a 5% 
error rate) after a training program.  

Author Keywords 
Soft keyboards; keyboard optimization; two-thumb text 
entry; touchscreen devices; bimanual performance 

ACM Classification Keywords 
H.5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  

INTRODUCTION 
Tablet computers and large smartphones with touchscreens 
are commonly interacted with using two thumbs. Use of the 
thumbs has an intuitive appeal: the grip is stable and sup-
ports typing while walking, sitting, or lying down. Despite 
these advantages, the low rate of text entry is a recognized 
problem. Reported rates (in words per minute, wpm) for 
two-thumb typing on a touchscreen range from 14 wpm 
[24] to 31 wpm [8]. Compare this range to other input tech-
niques with mobile devices: 55 wpm with 8–10 fingers on a 

tablet placed on a surface [15], 44 wpm with a stylus [22], 
and 60 wpm with two thumbs on a physical mini-QWERTY	  
keyboard [4]. With such rates, two-thumb text entry on 
touchscreens may be limited to simple tasks such as entry 
of messages, addresses, calendar events, and names [2].  

Our goal is to investigate the upper limit of typing perfor-
mance via methods known to improve typing performance. 
We address two major issues. First, no convention exists 
comparable to touch typing with physical keyboards that 
informs how to hold the device or how to move the thumbs. 
Touchscreens offer poor tactile feedback for keypresses, 
and the touch sensor does not allow the thumb to rest on its 
next target while the other thumb is moving, a technique 
known to boost rates with physical buttons [5]. Moreover, 
users may grip the device in ways that are detrimental to 
performance. Second, it is not known whether the QWERTY 
layout, traditionally used such that both thumbs are respon-
sible for a single key, is efficient when the thumbs do all 
the presses.  

The design of KALQ, shown in Figure 1, is informed by a 
series of studies that shed light on these open questions:  

1. Button size, keyboard shape, and position are in-
formed by a study of symmetric two-hand grips (N=6).  

2. Letter-to-key assignment is resolved computationally, 
informed by a model of two-thumb performance ac-
quired from a bimanual tapping task (N=20). 

3. Online error correction is based on a large corpus of 
mobile text and by modeling tap inaccuracies. 

To evaluate KALQ we trained users (N=6) longitudinally in 
the new layout using a number of performance-enhancing 
strategies. Users reached 37 wpm upon completion of the 
training. We conclude by discussing performance gains 
brought about by each design decision. 
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Goal and Approach 
We cast the design problem as a performance-optimization 
problem: the goal is to find the design with minimal aver-
age thumb movement time for typing representative English 
sentences. Movement time MT is measured here as target-
acquisition time in tapping tasks and is considered in con-
junction with accuracy and errors. In our effort to improve 
entry rates, our design choices favor superior performance. 
To maximize typing performance, we discuss not only de-
sign choices but also typing skill. 

Our design process consists of five steps performed on a 7" 
tablet: 

In Step 1: Grip Study, we consider grips allowing land-
scape-oriented device usage. We single out one grip that is 
best both in performance and in reducing occlusion of the 
display. We then decide on button size and on keyboard 
position, size, and shape. In the subsequent steps, we as-
sume this grip, because it yields the best tapping performance. 
These choices place our focus on split keyboard designs 
with non-overlapping movement of thumbs. 

In Step 2: Thumb Movement Modeling, we study 
two-thumb performance in the N-return task, a novel vari-
ant of the Fitts’ task modified for bimanual tapping. It al-
lows us to model same-side taps and taps that alternate 
sides while taking into account lateralization (differences 
between the dominant and non-dominant hand). In line with 
previous work, in addition to the standard Fitts’-model pa-
rameters, our model for alternate-side taps considers the 
time elapsed while the thumb awaits its turn [4,5,19]. To 
minimize MT in alternating taps, users adopted a hover-over 
strategy wherein the “idle” thumb travels toward its next 
target and hovers over it, waiting for its turn. We found that 
if a long time has elapsed, visual attention is needed to re-
cover the position of the thumb. This is at considerable cost 
to MT, something that the computational layout optimizer 
tries to avoid. 

In Step 3: Computational Layout Optimization, we uti-
lize a computational keyboard-optimization method [7,16, 
22,32] to evaluate 5.6 million letter-to-key assignments. We 
extend previous work in keyboard optimization to two-
thumb entry. We follow a hybrid method that combines 
global and local search. The layout of the best keyboard is 
further optimized via horizontal row-shifting.  

In Step 4: Error Correction, we add error correction that 
addresses two factors: linguistic context and the distribution 
of touch inaccuracies. The error-correction algorithm al-
lows skilled users to increase their speed by letting the algo-
rithm correct errors. 

In Step 5: Training and Evaluation, after the users’ base-
line performance with QWERTY is established, they under-
take a special 13–19-hour training program addressing the 
learning of key locations, grip, idle-thumb movement, use 
of spacebars, motor programs for frequent bigrams and 
words, and error correction.  

 
Figure 2. Top: Tapping performance with a breakdown by 
grip. The error bars denote 95% CIs. Bottom: The six grips 

examined in our study. The colored rectangle depicts the touch 
area of the tablet’s corner on the palmar space.  

STEP 1: GRIP AND KEYBOARD LAYOUT 
The grip on a device determines several performance-
affecting factors: the degrees of freedom in joint movement, 
the controlling muscles, and the orientation of the thumbs’ 
joints in relation to the display. It also determines the key-
board’s ideal size, position, and shape.  

Previous work on touchscreens has analyzed grips in terms 
of the framing it provides within the kinematic tree of the 
upper limbs [31]. We here identify the best-performing grip 
empirically, discuss the framing involved, and derive a 
keyboard layout. We focus on symmetric grips since they 
tend to be more stable and may offer simpler motor control 
than asymmetric grips. To define a grip, we utilize basic 
terminology of anatomy and joint movement [23]. A grip is 
defined by the touching area and the angle of the tablet’s 
edge and corner on the palmar space (Figure 2: bottom). 
Given a touch area, the hand clasps the device and the fin-
gers extend around the back side (Figure 3). Within the 
space of possible grips, we ruled out uncomfortable grips, 
unstable grips, and grips that are equivalent in terms of joint 
movement. This resulted in six candidate grips. These were 
grouped on the basis of the touch area on the palmar space: 

	  

The	  corner	  rests	  on	  the	  proximal	  palmar	  area,	  either	  on	  the	  
thenar/hypothenar	  eminence	  or	  on	  the	  thenar	  crease.	  	  

	  
The	   corner	   rests	   on	   the	   distal	   palmar	   area.	   It	   touches	   the	  
palmar	  crease.	  	  

	  
The	   corner	   rests	   on	   the	   digital	   crease.	   It	   is	   oriented	   along	  
the	  ulnar–radial	  axis.	  
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Figure 3. To design the layout of the keyboard for Grip	  1, we 

place two rectangular keygrids in the active regions defined by 
the thumb sweep of a radius of 58 mm. Button size is 9.9 mm. 

Method 
We employed a tapping task with point-targets appearing 
randomly one at a time on either side of the display. Targets 
appeared only in the thumb’s active area: the area that the 
thumb can reach without “breaking” the grip. The drawback 
of using random targets with no preview is that average 
performance is slower [14] and the user’s thumb may oc-
clude a target. The advantage over the standard recipro-
cal/cyclical tasks is that active areas can be thoroughly 
sampled with fewer subjects.  

Students from Saarland University participated in the study: 
six right-handed males, with ages ranging from 23 to 26 
(M 23.8). The experiment followed a within-subjects design 
with one factor: Grip (6 levels; see Figure 2). After intro-
duction of a grip, its active region was calibrated by having 
the user sweep his or her thumb from its highest position to 
its lowest position. The experimental task was to hit a red 
crosshair +  as quickly and accurately as possible. A new 
crosshair appeared immediately after the previous one was 
pressed. Side and position were randomized for each target. 
Three sessions were completed per subject per grip, with 
each session having 1,000 targets. To minimize order ef-
fects, pre-trial practice was employed and breaks were pro-
vided between trials. We used a Samsung Galaxy Tab 7.0 
Plus with a capacitive 7" 1024x600 display. The experiment 
was carried out in an office room with no distractions. Sub-
jects were compensated at 10€/hour. 

Results 
The dataset has 108,000 (6x3x6x1,000) taps. We filtered out 
taps 3 SD ± the mean of MT, leaving 106,185 valid taps 
(mean MT 556.9 ms, SD 113.8). To identify the best grip, 
one-way ANOVA was performed on MT and offset (the 
distance between the touch point and the target center).  

Figure 2 (top) presents MT (colored bars) and offset (graded 
bars) for the six grips, along with 95% confidence intervals 
(CIs). The effect of Grip	   was significant both for MT, 
F5,106179=242.6, p<.001, and for offset, F5,106179=33.3, 
p<.001. Grip	  1 emerges as the fastest, with an average MT 
of 539.8 ms. A post hoc test (Bonferroni corrected) showed 

that Grip	  1 had significantly lower MT than the other grips: 
all ps<.001. Its offset was also significantly smaller than 
Grip	   5’s but was larger than Grip	   6’s (both ps<.001). The 
difference from other grips in offset was not significant. 

Discussion 
The best grip, Grip	  1, is presented in detail in Figure 3. We 
chose Grip	  1	  because it had the lowest average MT. Though 
Grip	   1’s active region is the smallest (width 57.6 mm), it 
can easily accommodate enough buttons for the alphabet. 
This grip benefits from the tablet’s edge being on the thenar 
crease, locking the more distal joints of the hand. The fast-
est grips, 1–3, all inhibit control by distal muscles and 
joints, and they rely on the three thumb joints for tapping. 
By contrast, grips 4–5 allow control by the more distal pal-
mar muscles, which have a small cross-sectional area so are 
not as fast [23]. Our tentative conclusion is that pull-
ing/pushing the thumb with the wrist or distal parts of the 
hand is slower. However, our data is from a limited sample 
of right-handed male students. 

Design Implications 
Given this grip, we determine three parameters of the key-
board layout. First, to determine button size, we took the 
99% confidence interval for Grip	  1’s offset (31 pixels). For 
simplicity, we assumed a square button design, arriving at a 
button width of 62 pixels. To utilize the full active area, we 
increased the width slightly, to 66 pixels (9.9 mm). This 
button width is in line with the recommendations of two 
earlier studies of button size for thumb tapping [25,27].  

To determine the layout and position of the keyboard, we 
examined the active area for this grip by averaging the 
sweep radii of subjects. We assumed regular shapes, and we 
fitted the largest rectangle consisting of 9.9 mm buttons 
inside. This resulted in a 4x4 square-shaped grid, shown in 
Figure 3. A 3x5 row layout similar to QWERTY	  would have 
required either smaller buttons or exceeding the active area.  

Previous work has shown that tapping the corners or edges 
of the active region is slower [9,27]. In our design, only the 
two medial corner buttons would fall close to these ineffi-
cient areas; others are clearly within the active area. We 
learned in informal testing that the areas close to the proxi-
mal edge of the tablet are particularly hard to reach, so we 
shifted the keyboard 5 mm up, as Figure 3 shows. 

 
Figure 4. In the N-return task, a number sequence of N+2 keys 
appears on two 4x4-button grids (left, right). The first key (1) 
is tapped on one side, then N keys on the other (2)(3)(4). Then 

there is a return to the first side for 5. Here, N is 3. 
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STEP 2: MODELING TWO-THUMB PERFORMANCE  
We now describe how we extended the modeling of 
two-thumb text entry from physical keyboards to 
touchscreens. Our model addresses the following issues: 

1. Same-side taps: sequential keypresses on one side 
2. Alternating taps: switches between sides 
3. Lateralization: difference between left and right thumb 

To inform model optimization and user training (Steps 3 
and 5), we focus on superior performance, defined as the 
fastest tap sequences with under 5% errors. This approach 
is justified because letter-to-key assignments based on such 
a measure favor performance-enhancing typing strategies. 
We focus on speed here and will address accuracy in Step 4.  

Background  
The state-of-the-art predictive model for two-thumb text 
entry is a modification of Fitts’ law and was developed for 
physical keyboards [4,5,20]. Movement time from keyn-1 to 
keyn, follows the Shannon formulation of Fitts’ law:  

     𝑡!"##$ 𝑘𝑒𝑦!!!, 𝑘𝑒𝑦! = 𝑎 + 𝑏  𝐼𝐷 = 𝑎 + 𝑏  𝑙𝑜𝑔!   
!
!
+ 1 ,      (1) 

where D is the distance between keys, W is the width of keyn, 
ID is the index of difficulty derived from D and W, and a and 
b are empirical parameters.  

For alternate-side (switching) taps, the “idle” thumb is as-
sumed to approach its next target aggressively. Its movement 
time is affected by not only ID but also the time elapsed, 
telapsed, before its turn. After it presses keyn, the thumb imme-
diately starts to approach keyn. If it has not yet reached it 
when its turn comes, the remaining movement is shorter than 
if having to start from the beginning. If telapsed is long enough 
for the thumb to reach keyn, it can rest over or on it. Then, 
only a minimal time tmin is needed for pressing keyn. The total 
time Tn for the nth letter in a word is: 

                𝑇! =
𝑇!!! + 𝑡!"##$ 𝑘𝑒𝑦!!! − 𝑘𝑒𝑦!                           𝑠𝑎𝑚𝑒

𝑚𝑎𝑥 !!!!!!!"#
!!!!!!!"##$(!"#!!!!!"#!)

            𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒                           (2)  

In the case of touchscreens, resting on a key is impossible 
because it would cause an erroneous tap. For one to benefit 
from the waiting time, there are two possibilities: the thumb 
can either stay in the air in a fixed position or hover over 
the next key. Because D is smaller with the latter technique, 
and tfitts as well, we taught this technique to our subjects. 

Data Acquisition: The N-Return Experiment 
Our data are acquired from a bimanual tapping task wherein 
we manipulate telapsed by increasing the number of buttons 
that one hand is typing while the other is waiting. In the 
N-return task, the user has to type a sequence of 3–7 num-
bers (i.e., 1≤N≤5). Therefore, a thumb has to wait for N 
keys before it returns to tapping. In each sequence, the first 
key is on one side, then N keys on the other, and the last 
key is back on the initial side. Figure 4 illustrates the task.  

Participants: Twenty right-handed male students were re-
cruited from Saarland University (average age 24.5 years, 
SD 3.2). Half of the subjects were well acquainted with 
touch-typing in a physical QWERTY context. They were 
compensated for their time at €10/hour. To motivate the 
subjects further [4], we offered a bonus of 30€ to the best 
10% of subjects with respect to average MT.  

Experiment design: The experiment followed a randomized 
block design with 10 unique number sequences. The sides 
and positions of the 3–7 numbers were randomized within 
their keygrids with the constraint of disallowing repeated 
taps. Use of many repetitions was deemed necessary for 
users to learn the parallel movement of the “idle” thumb. 
Each sequence had 10 trials, each with 10 repetitions.  

Task and apparatus: The experimental task was to tap the 
sequence of numbers in ascending order 10 times as rapidly 
as possible while trying not to miss any key. The numbered 
targets were persistently shown during a trial to allow pre-
planning of movement. If a subject failed to complete a trial 
because of an error rate higher than 5%, the trial had to be 
redone. The same tablet device was used as in Step 1.  

Procedure: Subjects were first taught Grip	   1 and the hov-
er-over technique. For the hover-over technique, we in-
structed subjects to position the thumb over the next key 
while waiting for its turn. During the experiment, feedback 
on keypresses was given in real time via a black asterisk * 
(correct) and red asterisk * (incorrect). After each trial, a 
screen appeared with a summary of the speed and accuracy.  

Modeling 
In view of space restrictions, we omit the reporting of aver-
age data and focus on the highest performance within a 
condition (each condition had 10x10 N+2-tap sequences). 
To model best-case performance, we omitted sequences 

 
Figure 5. Models of same-side taps and alternate-side taps. Separate plots for left and right hand. Vertical bars denote 95% CIs. 
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with taps longer than 1,000 ms. Because in Step 3 we use 
pixel coordinates, we here report D in pixel units. In all 
models, we use eight ID conditions. For modeling of side-
switch taps, we use six telapsed conditions. 

Same-Side Taps 
For same-side taps, the subset of the fastest 7% of tap se-
quences constitutes 25,296 data points, or 65% of all data. 
This indicates that performance in this task improved quick-
ly, stabilizing near a user’s personal best. We model MT 
with a polynomial: 

           𝑀𝑇!"#$ = 319.5 − 89.0  𝐼𝐷 + 36.7  𝐼𝐷!   (3) 

           𝑀𝑇!"#!! = 237.3 − 7.6  𝐼𝐷 + 13.8  𝐼𝐷!   (4) 

The R2 values for the left and right side were .94 and .95, 
respectively (we later replicated this finding in a study of 
same-side taps). We draw two observations from Eq. (3) 
and (4): 

1. Moderate lateralization: The dominant hand is about 
30 ms faster than the non-dominant. 

2. The lowest-ID targets are slower than medium-ID tar-
gets, in contrast to the standard Fitts’-law models. 

The need for a squared term can be explained by the obser-
vation that a thumb at times occludes nearby targets (low-
ID) and it needs to be moved away for seeing the target. If 
one limits to ID≥1.3, a first-order model suffices. 

Alternating Taps 
Out of 14,619 returning taps (the Nth tap) in data, filtering 
to the best 15% within a condition yielded 5,105 data points 
(35% of the total). The 5% threshold was chosen to address 
the fact that reaching the best performance in alternating 
taps requires quite a few repetitions, and we had fewer ob-
servations of returning taps per sequence. Our model is a 
bivariate quadratic function with telapsed (see Background) 
and ID as the predictive variables: 

𝑀𝑇!"#$ = 265.286 − 9.501  𝐼𝐷 − 0.024  𝑡!"#$%!& + 2.003  𝐼𝐷!  
                 −0.007  𝑡!"#$%!&   𝐼𝐷 + 3.322 ∗ 10!  𝑡!"#$%!&!             (5)  
𝑀𝑇!"#!! = 142.601 + 86.564  𝐼𝐷 + 0.062  𝑡!"#$%!& − 17.949  𝐼𝐷!  
                            −0.035  𝑡!"#$%!&   𝐼𝐷 + 1.930 ∗ 10!  𝑡!"#$%!&!          (6) 

The fit for left- and right-thumb models was satisfactory: 
R2=.79. The following observations were made: 

1. Alternating taps are faster than same-side taps but only 
when telapsed is small.  

2. The non-dominant thumb (here, the left) is better at 
switching between thumbs when telapsed < 600 ms. In 
this range, its performance is less dependent on ID: it 
can virtually “teleport” over its next target. 

3. The dominant hand is better only for very brief switch-
es with a short distance. 

4. In alternate-side taps, ID has almost no effect, except 
for brief switches by the dominant (here, right) hand. 

5. There is a large penalty for long waiting. This slowing 
effect similar to that observed in previous work [11]. 

 
Figure 6. Illustration of the hover-over technique in writing of 
a five-character sequence 12345: The idle thumb (LEFT) be-
gins immediate transition toward a hover-over position after 
release from 1. It can approach its next target (5) while the 

other thumb is pressing down its target (4). 

Discussion 
We learned that the non-dominant hand is generally the 
better switcher, with a faster average MT. also We observed 
that for brief switches (small telapsed) MT is virtually unaf-
fected by both telapsed and ID, and in this case switches are 
faster than same-side taps, contrary to the slowing effect of 
switches reported earlier [11]. The benefit is due to the hov-
er-over behavior wherein the thumb moves immediately 
towards its next target, only needing to press down when its 
turn arrives (Figure 6). Observing this behavior is unsur-
prising, given that we taught it to the participants.  

The previous model for physical keyboards (Eq. 2) predicts 
decreasing MT as telapsed rises. In contrast, for taps where 
telapsed > 600 ms, a substantial penalty in MT was observed, 
similar to the slowing effect  [11]. We conjecture that this is 
due to interrupted memory [1]: As time passes without at-
tention to the idle side, uncertainty over the thumb’s posi-
tion grows. Once the thumb’s position has been forgotten, it 
needs to be restored via a glance [17].  

Design Implications 
We arrived at three implications for letter assignment: 

1. Maximize alternation between thumbs. 
2. In same-side tapping, favor the dominant-hand side. 
3. While the non-dominant side supports multiple key 

clusters, keys on the dominant-hand side should be 
packed around a center, to minimize travel costs. 

 
Figure 7. A hybrid optimizer using local and global search.  
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STEP 3: COMPUTATIONAL LAYOUT OPTIMIZATION 
Finding a mapping of letters to keyslots that minimizes fin-
ger travel time is an NP-complete problem that is best ad-
dressed by means of computational optimization methods 
[16]. In this section, we formulate this problem as a combi-
natorial optimization problem, extending existing keyboard 
optimization research from a single end-effector (i.e., a fin-
ger or stylus) to two end-effectors.  

In line with previous work [16], the keyboard is represented 
as a permutation of 26 letters, two spacebars, and four emp-
ty keyslots. Inclusion of empty slots allows the optimization 
algorithm to move them around the grids. The goal is to 
find a permutation that minimizes our cost function: aver-
age MT as defined by simulated typing of a representative 
corpus of sentences under equations 3–6. Representing 
keyboard as a permutation assigned to a fixed grid with 
keyslots yields a problem size of 4x1026.  

We extend previous work in permutation-based optimization 
by creating a hybrid approach that utilizes both gradient 
descent and simulated annealing (Figure 7). Initially, gradi-
ent-descent search is performed from 5,000 random starting 
locations. We pick the 100 best permutations, assuming that 
these must have gotten some critical parts of the layout cor-
rect. Simulated annealing is performed 10 times for each 
candidate layout. This effectively searches around the 
promising keyboard before convergence at the best local 
optimum. In the final step, gradient descent is performed 
for the 10 best keyboards. For this step, we allow double 
and triple transpositions also. This modification is inspired 
by evolutionary algorithms wherein larger transpositions 
are allowed [28]. With the iteration counts given in Figure 
7, this process yields a total of 5.6 million iterations. 

As our corpus we use the MobileEmail corpus, consisting of 
phrases written with mobile devices from the Enron e-mail 
dataset [12,29]. It has 2,109 sentences and 20,500 words, 
with, on average, 4.1 letters per word. We simulate let-
ter-by-letter transitions by applying equations 3–6 as ap-
propriate and keeping a record of thumb location and telapsed. 
Double keypresses were assumed to follow equations 3 and 
4 with D = 0 + ε. Following a recommendation from previ-
ous work [19], our spacebar policy is alternation: the thumb 
on the opposite side always presses the spacebar.  

In each iteration, the average cost C1 of a permutation is 
calculated for a corpus by means of Eq. 3–6. After this step, 
two keys are transposed and the cost of the new layout C2 is 
calculated. The only exception is the beginning of a new 
phrase, when the thumb starts at the third button from the 
edge on the second row (initial position). If C2<C1, the new 
permutation is accepted. If not, there are two alternatives 
for acceptance or rejection of C2. In gradient descent, we 
never choose a permutation with lower cost. In simulated 
annealing, we consult the Boltzmann distribution: 

 𝑃 𝑎𝑐𝑐𝑒𝑝𝑡  𝐶! = 1/(1 + 𝑒
!!!!!

! ),   (7) 

where T is the temperature parameter, which we set to 90 
[16]. Decreasing the temperature parameter T prevents the 
search from getting stuck too early at a local optimum [28]. 
Our implementation follows existing work [16]: 

1. set	  T	  =	  90	  
2. function	  (initial	  keyboard,	  T):	  Keyboard	  	  
3. 	  	  	  	  repeat	  
4. 	  	  	  	  	  	  	  	  	  	  	  	  choose	  two	  keys	  to	  transpose	  from	  initial	  keyboard	  
5. 	  	  	  	  	  	  	  	  	  	  	  	  determine	  the	  modified	  keyboard’s	  cost	  
6. 	  	  	  	  	  	  	  	  	  	  	  	  if	  new_cost	  <	  old_cost	  then	  
7. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  accept	  the	  modified	  keyboard	  
8. 	  	  	  	  	  	  	  	  	  	  	  	  else	  
9. 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  use	  the	  Boltzmann	  distribution,	  Eq.	  7	  
10. 	  	  	  	  	  	  	  	  	  	  	  	  reduce	  T	  
11. 	  	  	  	  	  	  	  	  	  	  	  	  increase	  i	  
12. 	  	  	  	  until	  i	  =	  maximum_iterations	  
13. return	  keyboard	  with	  lowest	  cost	  

Layout tuning: We conducted a row-tuning exercise for the 
best keyboard. This was inspired by recent split-keyboard 
designs such as dextr (see textwithdextr.com) in which key 
columns and rows are not aligned. Each row of keys (8 in 
all) was shifted 0, 20, 40, or 60 pixels horizontally, inde-
pendent of all others, yielding 48=65,536 layouts, from 
which we picked the best one. We looked at horizontal 
shifting only, because we learned that shifting vertically 
would require extending the thumb too far in attempts to 
reach the topmost keys. The resulting design shifts rows 2–4 
on the left-hand side 20 pixels right). This change produced 
a gain of only 0.1 wpm. The negligible gain is due to the 
interconnectedness of keys: shifting a key decreases the 
distance to some keys but increases the distance to others. 

Outcome: KALQ 
KALQ (as in “calculated”) is the best keyboard after 5.6M 
iterations and layout tuning with a predicted entry rate of 
49.0 wpm. For comparison, we created a quasi-QWERTY 
layout in a 4x4 grid, following QWERTY’s division of but-
tons by hand and retaining their relative order 
(top-to-bottom, left-to-right). KALQ is superior to the quasi-
QWERTY	   layout by 4.1% and to the alphabetical layout by 
6.1%.  

The following observations were made about KALQ: 

1. The division of work is almost equal, at 54% and 46% 
for the right and left thumb, respectively. 

2. Alternation is rapid: 62% of the taps are switches. 
3. Travel distances are short: On average, the left thumb 

moves 86 px, the right 117.  
4. The spacebars are centrally located. 
5. The right thumb handles all vowels except y. The 

clustering of vowels around the spacebar favors quick 
switches and minimizes travel distance. The right 
thumb is responsible for 64% of same-side taps.  

6. The left thumb has most of the consonants, exploiting 
its ability to hover above the next button sooner. It has 
most first letters of words and most of the consonants.  



           
Figure 8. A visualization of two statistical properties of typing 
with KALQ: Average MT to key-targets (hue: slow  fast) 

and frequency (transparency 1–100). 

Figure 8 depicts the average movement times and the fre-
quency of taps on letters. It demonstrates how the right 
thumb’s side has quick-to-operate, frequently pressed keys 
clustered around the spacebar, whereas the left thumb has 
only a few fast-action keys while the rest are more diffuse. 
This exploits the unique switching characteristics observed 
in the N-return study. A typing example is given in Table 1.  

STEP 4: ERROR CORRECTION 
Previous work has shown improvements in text-entry accu-
racy on mobile devices through error-correction techniques 
that consider linguistic context and movement characteris-
tics [6,9,13]. Ideally, error correction should operate in real 
time, correcting erroneous characters as they are typed.  

Building on previous work [13], we constructed an error-
correction technique for KALQ	   that utilizes both linguistic 
information and the movement model for two-thumb text 
entry. For each touch point T, the error-correction model 
finds the key 𝐾∗ that maximizes the posterior probability: 

 𝐾∗ = arg  max! 𝑃 𝐾 𝑇 𝑃 𝐾 .                       (8) 

Movement Model 
Since KALQ is a new keyboard layout there is no straight-
forward method to collect representative touch point data. 
We could not train a likelihood model on the evaluation 
study’s touch point data as this would mean we would train 
the model on the same subjects. Therefore, we instead esti-
mated the likelihood P(K|T) by using a prescriptive model 
that assumes normal distribution of touch points [13], 
which is justified by existing evidence [9]. The probability 
of a touch point belonging to a particular key is 

 𝑃 𝐾 𝑇 = exp − !!
!

!!
! ,   (9) 

where 𝑑! is the Euclidean distance between the touch point 
and the center of the key and 𝜎! is an estimate of the vari-
ance of the touch point distribution around that particular 
key’s center. This parameter was estimated from training 
data of Step 2 that is disjoint from the evaluation (Step 5). 

Language Model  
The prior probability P(K) was estimated using a statistical 
language model trained on a large corpus. Our character-
based n-gram model estimated the probability of the next 
key based on up to the previous six characters of context: 

Letter	   Hand	   D	  (px)	   telapsed	  (ms)	   MT	  (ms)	  
S	   L	   -‐	   -‐	   266	  
O	   R	   	  	  93	   	  	  266	   232	  
U	   R	   	  	  93	   -‐	   252	  
N	   L	   	  	  66	   	  	  485	   250	  
D	   L	   	  	  66	   -‐	   266	  
S	   L	   	  	  93	   -‐	   266	  
_	   R	   	  	  66	   	  	  782	   246	  
G	   R	   148	   -‐	   268	  
O	   R	   132	   -‐	   263	  
O	   R	   	  	  	  0	   -‐	   237	  
D	   L	   	  	  93	   1015	   255	  

Table 1. Predicted typing performance with KALQ.  

 𝑃 𝐾 = 𝑃 𝐾 𝐶 ≈ 𝑃 𝐾 C!!!!!!),  (10) 

where C is all previously written text and 𝐶!!!!!!  are the last 
six characters written. 

We trained our model on a sample of 778M messages sent 
via Twitter (12/2010–6/2012). Duplicate tweets, retweets, 
and non-English-language tweets were eliminated via a 
language-identification module [18, 19] (with a CI of 95%). 
We included only tweets written on mobile devices as 
judged from a tweet’s source string. We split each tweet 
into one or more sentences and kept only sentences wherein 
all words (after removal of punctuation such as commas) 
were in a list of 330K English words. The latter word list 
was obtained by concatenation of a number of human-
edited dictionaries (Wiktionary, Webster’s dictionary, the 
CMU pronouncing dictionary, and GNU aspell). After fil-
tering, the training data consisted of 94.6M sentences, 
626M words, and 2.56G characters. 

Our language model used a vocabulary of the letters A–Z 
plus space, apostrophe, comma, period, exclamation point, 
and question mark. Using the SRILM toolkit, we trained a 
7-gram language model, using Witten–Bell smoothing and 
no count cutoffs. In response to resource constraints of our 
mobile device, we entropy-pruned the model to reduce its 
size. Our final model had 1.4M parameters (all n-gram 
probabilities plus backoff weights) and a compressed disk 
size of 9 MB. We tested the predictive power of the model 
by using a set of messages written on Blackberry mobile 
devices [12]. We measured language-model performance in 
terms of average per-letter perplexity. The perplexity indi-
cates the average number of choices the model thinks are 
possible next, given the previous context. The perplexity of 
the MobileEmail sentences in our model was 3.84. Despite 
its small size, the model performed well even when com-
pared to an unpruned 10-gram model with 340M parame-
ters. This large model only reduced the test set's perplexity 
to 3.44. 

STEP 5: TRAINING AND EVALUATION 
Empirical evaluation is preferable to model-based predic-
tions in the case of novel layouts, because predictions have 
turned out to be higher than the empirically achieved rates 
(e.g., compare the prediction in [32] to empirical rates re-
ported in [33]). Overestimation may arise from the fact that 
Fitts’-law-based models disregard factors that affect typing 
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M! B! W! H!

U!

G! T! O!
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performance. However, for validation of a novel keyboard 
design, a compromise between sample size and the length 
of training must be sought. We preferred securing sufficient 
time for learning new motor programs over a large N. 

Training Program and Performance Assessment 
To minimize the training time and to maximize eventual 
performance, we developed a systematic training program. 
Our training program builds on existing work: teaching key 
locations [29], practicing frequent bigrams and distributing 
practice over time [33], and rewarding high performance 
monetarily [4]. “Cold turkey” evaluation, wherein users 
type randomly selected phrases with no special practice, 
may not allow time for performance to approach a model’s 
predicted performance. 

The program consists of 13–19 one-hour sessions structured 
in the manner Table 2 describes. The baseline performance 
level is assessed first with QWERTY, without practice and 
instruction in typing. The first training sessions with KALQ 
focus on learning the grip, spacebar use, and the hover-over 
technique. We provide instructions in each and monitor 
performance. Key locations are practiced by typing the al-
phabet without seeing the key labels. After learning these 
basics, the trainees enter sessions with the most common 
English bigrams and words. In the subsequent full-sentence 
practice, they type randomly chosen sentences of increasing 
length from the MobileEmail corpus [12,29]. From that 
point on, we set performance goals and give feedback on 
typing rate. We also include a special session that focuses 
on bigrams or words that had been slower than average for 
the user. After performance starts to stabilize, toward the 
12th session, we introduce error-correction exercises, ask-
ing users to speed up and ignore errors.  

Participants 
Six right-handed students (3 M, 3 F) were recruited from 
Saarland university (M 25 years, SD 3.52). They reported 
having almost no experience with large touchscreen devices 
such as tablets, and only one was a touch-typist on physical 
QWERTY keyboards. The participants were compensated at 
10€/hour, and the two best were given a bonus of €100.  

Session	   Contents	   Test	   Goal	  
0	   QWERTY	  typing	  test	   I	   Baseline	  	  measurement	  
1	   Grip,	  idle	  thumb	  tech-‐

nique,	  spacebar	  policy	  
	   Introduce	  KALQ,	  confirm	  

understanding	  of	  the	  basics	  
1-‐3	   The	  alphabet	  and	  frequent	  

words	  
	   Type	  the	  alphabet	  without	  

seeing	  the	  key	  labels	  
3-‐8	   Frequent	  bigrams	  and	  

words	  
II,	  III	   Learn	  motor	  techniques	  for	  

frequent	  text,	  speed	  up	  
9-‐13	   Full	  sentences,	  frequent	  

bigrams	  and	  words	  
IV	   Speed	  up	  gradually	  

13-‐19	   As	  above	  but	  extra	  prac-‐
tice	  with	  error	  correction	  

	   Speed	  up	  while	  keeping	  
error	  rate	  under	  5%	  

Final	   Final	  evaluation	   Va,	  Vb	   Personal	  best	  with	  KALQ	  

Table 2. Our program for training and assessing  
typing performance with KALQ. 

 
Figure 9. Development of text entry speed throug the training 

program. The vertical bars denote 95% CIs. 

Measurement of Typing Performance 
Six tests were carried out throughout the program (see Ta-
ble 2): the first for QWERTY and the rest to track improve-
ment in KALQ. Our QWERTY	   setup was a full-width three-
rows-plus-spacebar keyboard identical to the built-in key-
board of the tablet (button sizes larger than in KALQ). Be-
cause using the same phrase sets repeatedly overestimates 
entry rates [33], we used separate phrases sets for training 
vs. testing. Our phrase set is a subset of the MobileEmail 
corpus with verified memorable sentences: 200 phrases, 
1,073 words, and 5,253 characters [12]. The training phrase 
sets had 1,147 unique sentences after the removal of these 
sentences. Presentation order was randomized. All tests 
included a 15-minute warm-up session. Users’ final per-
formance was tested with and without error correction (tests 
Va and Vb in Table 2). 

Apparatus and Materials 
We used a Samsung Galaxy Tab 7.7", which has a slightly 
larger and more responsive touch sensor than the tablet of 
our previous studies. Feedback on error rate and wpm was 
given after each phrase. In exercises but not in testing, a 
REDO button appeared if the error rate exceeded 5%. Dur-
ing typing, a black asterisk * was presented for correct taps 
and a red one * for incorrect taps. With error correction, 
coloring was turned off to improve the latency of feedback.  

Results 
We calculate wpm with words of five characters. Error rate 
is character error rate (CER), calculated by using the 
Damerau-Levenhstein distance.  

Typing Performance 
The users’ baseline performance with the full-width 
QWERTY layout was 27.7 wpm (9.0% CER). Figure 9 
shows the development of typing performance over the 
course of the program. In the final test, after, on average, 
16.8 hours of training (min. 13 h, max. 19 h), the users 
reached 37.1 wpm (5.2% CER). The difference to QWERTY 
was significant (see Figure 9). 

We believe that in a task involving text generation, their 
performance would be even better. We noticed that in the 
transcription task, long sentences caused problems, because 
users often had to glance at the stimulus phrase and they 
lost the position in the text because only asterisks were pro-

KALQQWERTY
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vided as resumption cues. Therefore, we examined the dis-
tribution of MT and divided the phrases into two bins by 
whether they contained taps longer than 900 ms. The latter, 
in our experience, correlates well with the glancing behav-
ior. The average typing speed for “non-glance phrases” was 
indeed slightly higher: 40.2 wpm (4.0% CER). This result is 
considered tentative, because an eye-tracker was not used. 

Effect of Error Correction 
The users’ entry rate with error correction was about the 
same as without it: 36.7 wpm (6.4% CER). Disappointing-
ly, the error rate was slightly higher with the online version 
of our error-correction technique than without it.  

We hypothesized that this is probably due to the chicken-
and-egg problem of no suitable training data from true 
KALQ expert users being available before the experiment 
was conducted. Therefore, once experimental data had been 
collected, we performed two offline experiments with the 
typing data. We used a single user typing 26 phrases as 
training data, a dataset disjoint from the testing data on 
which we ran the offline experiment. The typing data from 
this user were then used to re-estimate the error-correction 
model’s touch-point parameters. We found that allowing 
the error-correction algorithm to learn touch-point regulari-
ties from even a single expert KALQ user was enough to 
result in a percentage point’s reduction in CER, both for 
test data originally collected with online error correction 
and for data originally collected without it. We also investi-
gated the impact of allowing the error-correction algorithm 
to leverage prior recognition context (the sets of likelihoods 
and priors for all previously typed keys) instead of having 
to rely on a character string as the sole prior context. In 
other words, the error-correction algorithm performs a 
search through all possible letter combinations over the 
entire prior context when it tries to identify the most likely 
text in view of the user’s input, instead of just performing a 
point estimate for the last inputted key. Since a search over 
all letter sequences is infeasible, we used a pruning beam to 
speed up the search. We found that using prior recognition 
context further reduced the error rate, with a 1.3 percentage 
point reduction in CER, both for test data collected with 
online error correction and data collected without it. 

DISCUSSION 
This work has contributed to understanding how to design 
usable and effective keyboards for two-thumb text entry on 
mobile devices using touchscreens. We have presented a 
series of studies with the goal of improving text entry rates. 
With all design choices in play, trained users achieved an 
entry rate of 37 wpm (5% CER)—an improvement of 34% 
over their “naïve” baseline performance with a standard 
touch-QWERTY system. This rate represents an improve-
ment of 19% over the best rate, of 31 wpm, reported in the 
previous literature [8]. However, the entry rates are not di-
rectly comparable due to differences in the samples and the 
training procedures. Nevertheless, given that our users were 
non-native speakers, we consider the result promising.  

More interestingly, the results can help future efforts by 
providing estimates of the gains attributable to different 
design and ergonomic choices:  

• Grip: Grasping the tablet with its corner in the “valley” 
created by the thenar and hypothenar eminence yields 
~4% faster tapping performance than does a “random” 
grip. Moreover, the associated keyboard layout (Figure 3) 
occludes the display the least.  

• Hover-over technique: By analyzing an existing model 
of two-thumb typing, we proposed a thumb coordination 
technique wherein the idle thumb is approaching its next 
target and hovers over it to minimize travel distance. 
Based on Figure 5, we estimate that this typing strategy 
saves about 10–20% on MT in alternating taps.  

• Optimization of letter assignment: KALQ was optimized 
computationally from a model of best-performance two-
thumb typing. As a result, it maximizes alternating taps 
and minimizes same-side travel distances. Our model pre-
dicted a benefit of only 4% over a comparable quasi-
QWERTY	   layout. However, this prediction was made as-
suming the same typing technique and grip.  

• Error correction: We developed an error-correction 
technique that adapts well-known techniques to the 
unique motor and linguistic aspects of two-thumb typing. 
Although our users’ error rates were not improved by the 
online version of our corrector, offline analyses showed 
that with better parameters, the error rate can be de-
creased by 1.3 percentage points. 

The design of KALQ is readily usable. The layout has space 
to accommodate more buttons without breaking the grip. 
Backspace, shift, punctuation, and special characters can be 
placed in the empty slots on KALQ‘s right-hand side. To 
tune the keyboard to the hand dimensions of the user, it 
could be scaled, with calibration asking the user to perform 
the sweep gesture shown in Figure 3, and left-handed users 
could select a version wherein the left and right keygrids 
are swapped. However, because the associated improve-
ment due to the optimization layout is small, not many us-
ers may want to learn KALQ. Our results suggest that tangi-
ble improvements can be achieved also for QWERTY simply 
by changing the grip and learning the hover-over technique. 
However, we hypothesize that, because of the smaller travel 
distances, KALQ is more ergonomic when used intensively. 

We foresee several opportunities to reach even higher typ-
ing rates. To improve letter-to-key assignment, other factors 
affecting two-thumb typing should be incorporated, such as 
the angle of approach, occlusion by the thumb’s tip, and the 
absolute screen location of keys. To improve the design for 
goals other than performance, especially learning time, 
multi-objective optimization could be used [7]. Error cor-
rection can be improved through training of the movement 
model with real-world user data. We have studied only one 
grip, which is probably contingent on properties unique to 
our sample. Future research should address other grips and 
find designs that work with the distribution of grips that 



users normally exhibit. Finally, our sampling has been lim-
ited to right-handed male students and a 7" tablet. Future 
research needs to examine handedness and the different 
hand sizes and form factors. Larger form factors are likely 
to exhibit phenomena similar to those reported here, but 
smaller form factors will face novel issues, such as that the 
thumbs’ active regions will overlap [5]. 
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